Peer-reviewed publications using MODES
MODES reference paper:
Normal-mode function representation of global 3-D data sets: open-access software for the atmospheric research community
Žagar, N., Kasahara, A., Terasaki, K., Tribbia, J. and Tanaka, H., 2015. Normal-mode function representation of global 3-D data sets: open-access software for the atmospheric research community. Geoscientific Model Development, 8(4), pp.1169-1195. DOI: 10.5194/gmd-8-1169-2015
2024
Decomposition of the horizontal wind divergence associated with the Rossby, inertia-gravity, mixed Rossby-gravity and Kelvin waves on the sphere
Neduhal, V., N. Žagar, F. Lunkeit, I. Polichtchouk, and Ž. Zaplotnik, 2024: Decomposition of the horizontal wind divergence associated with the Rossby, inertia-gravity, mixed Rossby-gravity and Kelvin waves on the sphere. Journal of Geophysical Research: Atmospheres, 129, e2023JD040427. https://doi.org/10.1029/2023JD040427.
The mechanism of scale selection for mixed Rossby-gravity waves in the upper troposphere and the upper stratosphere
Mahó S.I., Zagar N., Lunkeit F., Vasylkevych S., 2024: The mechanism of scale selection for mixed Rossby-gravity waves in the upper troposphere and the upper stratosphere. Accepted in the Geophysical Research Letters
2023
The Relationship between Horizontal and Vertical Velocity Wavenumber Spectra in Global Storm-Resolving Simulations
Morfa, Y. A., and C. C. Stephan, 2023: The Relationship between Horizontal and Vertical Velocity Wavenumber Spectra in Global Storm-Resolving Simulations. J. Atmos. Sci., 80, 1087–1105, https://doi.org/10.1175/JAS-D-22-0105.1.
Decomposition of Vertical Velocity and Its Zonal Wavenumber Kinetic Energy Spectra in the Hydrostatic Atmosphere
Žagar, N., V. Neduhal, S. Vasylkevych, Ž. Zaplotnik, and H. L. Tanaka, 2023: Decomposition of Vertical Velocity and Its Zonal Wavenumber Kinetic Energy Spectra in the Hydrostatic Atmosphere. J. Atmos. Sci., 80, 2747–2767, https://doi.org/10.1175/JAS-D-23-0090.1.
Atmospheric bias teleconnections in boreal winter associated with systematic sea surface temperature errors in the tropical Indian Ocean
Zhao, Y.-B., Žagar, N., Lunkeit, F., and Blender, R., 2023: Atmospheric bias teleconnections in boreal winter associated with systematic sea surface temperature errors in the tropical Indian Ocean, Weather Clim. Dynam., 4, 833–852, https://doi.org/10.5194/wcd-4-833-2023
2022
Three-dimensional structure of the equatorial Kelvin wave: vertical structure functions, equivalent depths, and frequency and wavenumber spectra
Žagar, N., F. Lunkeit, F. Sielmann, and W. Xiao, 2022: Three-dimensional structure of the equatorial Kelvin wave: vertical structure functions, equivalent depths, and frequency and wavenumber spectra. Journal of Climate, 35, 7, 2209-2230. DOI: 10.1175/JCLI-D-21-0342.1
Atmospheric Energy Spectra in Global Kilometre-Scale Models
Stephan, CC, Duras, J, Harris, L, Klocke, D, Putman, WM, Taylor, M, Wedi, NP, Žagar, N and Ziemen, F. 2022. Atmospheric Energy Spectra in Global Kilometre-Scale Models. Tellus A: Dynamic Meteorology and Oceanography, 74(2022): 280–299. DOI: 10.16993/tellusa.26
Signatures of midlatitude heat waves in global Rossby wave spectra
Strigunova, I., Blender, R., Lunkeit, F., and Žagar, N., 2022: Signatures of midlatitude heat waves in global Rossby wave spectra, Weather Clim. Dynam., 3, 1399–1414, https://doi.org/10.5194/wcd-3-1399-2022
Metrics of the Hadley circulation strength and associated circulation trends
Pikovnik, M., A. Zaplotnik, L. Boljka, and N. Žagar, 2022: Metrics of the Hadley circulation strength and associated circulation trends. Weather Clim. Dynam.,3, 2, 625-644, DOI: 10.5194/wcd-3-625-2022
The intricacies of identifying equatorial waves
Knippertz, P., M. Gehne, G. N. Kiladis, K. Kikuchi, A. R. Satheesh, P. E. Roundy, G. -Y. Yang, N. Žagar, J. Dias, A. H. Fink, J. Methven, A. Schlueter, F. Sielmann, M. C. Wheeler, 2022: The intricacies of identifying equatorial waves. Quart. J. Roy. Met. Soc., 148( 747), 2814– 2852. DOI: https://doi.org/10.1002/qj.4338
2021
The signature of the tropospheric gravity wave background in observed mesoscale motion
Stephan, C.C. and Mariaccia, A., 2021. The signature of the tropospheric gravity wave background in observed mesoscale motion. Weather and Climate Dynamics, 2(2), pp.359-372. https://doi.org/10.5194/wcd-2-359-2021.
Waves and coherent flows in the tropical atmosphere: New opportunities, old challenges
Stephan, C.C., Žagar, N. and Shepherd, T.G., 2021. Waves and coherent flows in the tropical atmosphere: new opportunities, old challenges. Quarterly Journal of the Royal Meteorological Society., https://doi.org/10.1002/qj.4109
Uncertainties in Kelvin waves in ECMWF analyses and forecasts: Insights from Aeolus observing system experiments.
Žagar, N., M. Rennie, and L. Isaksen, 2021: Uncertainties in Kelvin waves in ECMWF analyses and forecasts: Insights from Aeolus observing system experiments. Geophysical Research Letters, 48, e2021GL094716. https://doi.org/10.1029/2021GL094716.
2020
An assessment of scale-dependent variability and bias in global prediction models
Žagar, N., Kosovelj, K., Manzini, E., Horvat, M. and Castanheira, J., 2020. An assessment of scale-dependent variability and bias in global prediction models. Climate Dynamics, 54(1), pp.287-306. https://doi.org/10.1007/s00382-019-05001-x
Comments on “What is the predictability limit of midlatitude weather?”
Žagar, N. and I. Szunyogh, 2020: Comments on “What Is the Predictability Limit of Midlatitude Weather?”. J. Atmos. Sci., 77(2). 781-785, https://doi.org/10.1175/JAS-D-19-0166.1
Modal view of atmospheric variability: applications of normal-mode function decomposition in weather and climate research
Žagar, N. and Tribbia, J. eds., 2020. Modal View of Atmospheric Variability: Applications of Normal-Mode Function Decomposition in Weather and Climate Research (Vol. 8). Springer Nature. https://doi.org/10.1007/978-3-030-60963-4.
Atmospheric subseasonal variability and circulation regimes: spectra, trends, and uncertainties
Žagar, N., Ž. Zaplotnik, and K. Karami, 2020: Atmospheric Subseasonal Variability and Circulation Regimes: Spectra, Trends, and Uncertainties. J. Climate, 33 (21), 9375–9390, https://doi.org/10.1175/JCLI-D-20-0225.1
2019
A reduced-order representation of the Madden–Julian oscillation based on reanalyzed normal mode coherences
Kitsios, V., O’Kane, T.J. and Žagar, N., 2019. A reduced-order representation of the Madden–Julian oscillation based on reanalyzed normal mode coherences. Journal of the Atmospheric Sciences, 76(8), pp.2463-2480. https://doi.org/10.1175/JAS-D-18-0197.1.
Modal decomposition of the global response to tropical heating perturbations resembling MJO
Kosovelj, K., F. Kucharski, F. Molteni and N. Žagar, 2019: Modal decomposition of the global response to tropical heating perturbations resembling MJO. J. Atmos. Sci., 76, 1457-1469, https://doi.org/10.1175/JAS-D-18-0203.1.
Systematic decomposition of the MJO and its Northern Hemispheric extratropical response into Rossby and inertio‐gravity components
Franzke, C.L., Jelic, D., Lee, S. and Feldstein, S.B., 2019. Systematic decomposition of the MJO and its Northern Hemispheric extratropical response into Rossby and inertio‐gravity components. Quarterly Journal of the Royal Meteorological Society, 145(720), pp.1147-1164.https://doi.org/10.1002/qj.3484.
2018
Estimating subseasonal variability and trends in global atmosphere using reanalysis data
Žagar, N., D. Jelić, M.J. Alexander and E. Manzini, 2018: Estimating subseasonal variability and trends in global atmosphere using reanalysis data. Geophys. Res. Lett., 45, 12999-13007, https://doi.org/10.1029/2018GL080051.
Gravity waves excited during a minor sudden stratospheric warming
Doernbrack, A., S. Gisinger, N. Keifler, T. Portele, M. Bamberger, M. Rapp, M. Gerding, J. Soder, N. Žagar and D. Jelic, 2018: Gravity waves excited during a minor sudden stratospheric warming. Atmos. Chem. Phys.,18, 12915-12931, https://doi.org/10.5194/acp-18-12915-2018
Multivariate analysis of Kelvin wave seasonal variability in ECMWF L91 analyses
Blaauw, M. and N. Žagar, 2018: Multivariate analysis of Kelvin wave seasonal variability in ECMWF L91 analyses. Atmos. Chem. Phys., 18, 8313-8330, https://doi.org/10.5194/acp-18-8313-2018
2017
Scale-dependent estimates of the growth of forecast uncertainties in a global prediction system
Žagar, N., Horvat, M., Zaplotnik, Ž. and Magnusson, L., 2017. Scale-dependent estimates of the growth of forecast uncertainties in a global prediction system. Tellus A: Dynamic Meteorology and Oceanography, 69(1), p.1287492. https://doi.org/10.1080/16000870.2017.1287492.
Energy spectra in inertio-gravity waves in global analyses
Žagar, N., Jelić, D., Blaauw, M. and Bechtold, P., 2017. Energy spectra and inertia–gravity waves in global analyses. Journal of the Atmospheric Sciences, 74(8), pp.2447-2466. https://doi.org/10.1175/JAS-D-16-0341.1
A global perspective of the limits of prediction skill of NWP models
Žagar, N., 2017. A global perspective of the limits of prediction skill of NWP models. Tellus A: Dynamic Meteorology and Oceanography, 69(1), p.1317573. https://doi.org/10.1080/16000870.2017.1317573.
2016
Scale-dependent representation of the information content of observations in the global ensemble Kalman filter data assimilation
Žagar, N., Anderson, J., Collins, N., Hoar, T., Raeder, K., Lei, L. and Tribbia, J., 2016. Scale-dependent representation of the information content of observations in the global ensemble Kalman filter data assimilation. Monthly Weather Review, 144(8), pp.2927-2945. https://doi.org/10.1175/MWR-D-15-0401.1
Normal modes of atmospheric variability in observations, numerical weather prediction and climate models
Žagar, N., J. Boyd, A. Kasahara, J. Tribbia, E. Källén, H. Tanaka and J.-I. Yano, 2016: Normal modes of atmospheric variability in observations, numerical weather prediction and climate models. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-15-00325.1
2015
Systematic decomposition of the Madden‐Julian Oscillation into balanced and inertio‐gravity components
Žagar, N. and Franzke, C.L., 2015. Systematic decomposition of the Madden‐Julian Oscillation into balanced and inertio‐gravity components. Geophysical Research Letters, 42(16), pp.6829-6835, https://doi.org/10.1002/2015GL065130. https://doi.org/10.1002/qj.3484.
A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble
Žagar, N., Buizza, R. and Tribbia, J., 2015. A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. Journal of Atmospheric Sciences, 72(11), pp.4423-4444. https://doi.org/10.1175/JAS-D-15-0061.1